skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Geredeli, Pelin G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. Abstract We consider the finite element approximation of a coupled fluid‐structure interaction (FSI) system, which comprises a three‐dimensional (3D) Stokes flow and a two‐dimensional (2D) fourth‐order Euler–Bernoulli or Kirchhoff plate. The interaction of these parabolic and hyperbolic partial differential equations (PDE) occurs at the boundary interface which is assumed to be fixed. The vertical displacement of the plate dynamics evolves on the flat portion of the boundary where the coupling conditions are implemented via the matching velocities of the plate and fluid flow, as well as the Dirichlet boundary trace of the pressure. This pressure term also acts as a coupling agent, since it appears as a forcing term on the flat, elastic plate domain. Our main focus in this work is to generate some numerical results concerning the approximate solutions to the FSI model. For this, we propose a numerical algorithm that sequentially solves the fluid and plate subsystems through an effective decoupling approach. Numerical results of test problems are presented to illustrate the performance of the proposed method. 
    more » « less
  3. Abstract In this study, we consider the Oseen structure of the linearization of a compressible fluid–structure interaction (FSI) system for which the interaction interface is under the effect of material derivative term. The flow linearization is taken with respect to an arbitrary, variable ambient vector field. This process produces extra “convective derivative” and “material derivative” terms, which render the coupled system highly nondissipative. We show first a new well‐posedness result for the full incorporation of both Oseen terms, which provides a uniformly bounded semigroup via dissipativity and perturbation arguments. In addition, we analyze the long time dynamics in the sense of asymptotic (strong) stability in an invariant subspace (one‐dimensional less) of the entire state space, where the continuous semigroup isuniformly bounded. For this, we appeal to the pointwise resolvent condition introduced in Chill and Tomilov [Stability of operator semigroups: ideas and results, perspectives in operator theory Banach center publications,75(2007), Institute of Mathematics Polish Academy of Sciences, Warszawa, 71–109], which avoids an immensely technical and challenging spectral analysis and provides a short and relatively easy‐to‐follow proof. 
    more » « less
  4. null (Ed.)